A High-Throughput Screen for the Engineered Production of β-Lactam Antibiotics

High-throughput screens and selections have had profound impact on our ability to engineer proteins possessing new, desired properties. These methods are especially useful when applied to the modification of existing enzymes to create natural and unnatural products. In an advance upon existing methods we developed a high-throughput, genetically regulated screen for the <i>in vivo</i> production of β-lactam antibiotics using a green fluorescent protein (gfp) reporter. This assay proved reliable and sensitive and presents a dynamic range under which a wide array of β-lactam architectural subclasses can be detected. Moreover, the graded response elicited in this assay can be used to rank mutant activity. The utility of this development was demonstrated <i>in vivo</i> and then applied to the first experimental investigation of a putative catalytic residue in carbapenem synthase (CarC). Information gained about the mutability of this residue defines one parameter for enzymatic activity and sets boundaries for future mechanistic and engineering efforts.