Yu, Miao Kenny, Steven Using atomistic simulations to model Cadmium Telluride thin film growth Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1\sim 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer. Modelling;Cadmium telluride;Thin film growth;Materials Engineering not elsewhere classified;Condensed Matter Physics 2016-03-23
    https://repository.lboro.ac.uk/articles/journal_contribution/Using_atomistic_simulations_to_model_Cadmium_Telluride_thin_film_growth/9233918