%0 Generic %A Wang, Zhao-Yang %A Wang, Meng-Qi %A Li, Yan-Ling %A Luo, Peng %A Jia, Tong-Tong %A Huang, Ren-Wu %A Zang, Shuang-Quan %A C. W. Mak, Thomas %D 2018 %T Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters %U https://acs.figshare.com/articles/dataset/Atomically_Precise_Site-Specific_Tailoring_and_Directional_Assembly_of_Superatomic_Silver_Nanoclusters/5774355 %R 10.1021/jacs.7b11338.s005 %2 https://ndownloader.figshare.com/files/10186236 %K superatomic Ag 14 building blocks %K superatomic-nanocluster materials exhibit tunable %K CH 3 CN species site-specifically %K 1 D-to -3D superatomic silver cluster-assembled materials %K Superatomic Silver Nanoclusters Convenient generation %K superatomic silver clusters %K bidentate N-containing ligands %K monodendate pyridine ligands %K Ag 14 %K C 2 B 10 H 10 S 2 %K CH 3 CN %K NC %K corner N-donor ligands %K Ag 14 superatoms %K SCAM %K vertex-coordinated CH 3 CN ligands %K superatomic silver nanoclusters %K Ag 14 superatom %X Convenient generation of stable superatomic silver clusters and their systematic site-specific tailoring and directional assembly present an enduring and significant challenge. In this work, we prepared a face-centered cubic (fcc) array of Ag14 superatoms protected by face-capping 1,2-dithiolate-o-carborane (C2B10H10S2) ligands, each produced from 1-thiol-o-carborane in crystallization with simultaneous reduction of Ag+ to Ag0. We find that the corner N-donor ligands contribute predominately to the stability and luminescence of the Ag14 superatom. As the first-formed nanocluster [Ag14(C2B10H10S2)6(CH3CN)8]·4CH3CN (NC-1) with labile vertex-coordinated CH3CN ligands is highly unstable, monodendate pyridine ligands were used to replace these CH3CN species site-specifically, giving [Ag14(C2B10H10S2)6(pyridine/p-methylpyridine)8] (NCs-2,3) in gram scale with its core structure intact, which features ultrastability up to 150 °C in air. Moreover, using bidentate N-containing ligands to bridge the superatomic Ag14 building blocks, we constructed an unprecedented hierarchical series of 1D-to-3D superatomic silver cluster-assembled materials (SCAM-1,2,3,4), and SCAM-4 is air-stable up to 220 °C. Furthermore, this series of stable solid-state superatomic-nanocluster materials exhibit tunable dual emission with wide-range thermochromism. The present study constitutes a major step toward the development of ligand-modulation of the structure, stability, assembly, and functionality of superatomic silver nanoclusters. %I ACS Publications