Peripheral Vascular Resistance Impairment during Isometric Physical Exercise in Normotensive Offspring of Hypertensive Parents PortelaNatália AmaralJosária Ferraz MiraPedro Augusto de Carvalho SouzaLivia Victorino de Godoy MartinezDaniel LaterzaMateus Camaroti 2017 <div><p>Abstract Background: A family history of hypertension is associated with vascular and autonomic abnormalities, as well as an impaired neurohemodynamic response to exercise. Objective: To test the hypothesis that normotensive individuals with a family history of hypertension present an impaired peripheral vascular resistance response to exercise. Methods: The study included 37 normotensive volunteers of both sexes who were sedentary, eutrophic, and nonsmokers, comprising 23 with (FH+; 24 ± 3 years) and 14 without (FH-; 27 ± 5 years) a family history of hypertension. Blood pressure, heart rate (DIXTAL®), forearm blood flow (Hokanson®), and peripheral vascular resistance were simultaneously measured for 3 minutes during rest and, subsequently, for 3 minutes during an isometric exercise at 30% of maximal voluntary contraction (Jamar®). Results: At rest, the FH+ and FH- groups present similar mean blood pressure (83 ± 7 versus 83 ± 5 mmHg, p = 0.96), heart rate (69 ± 8 bpm versus 66 ± 7 bpm, p = 0.18), forearm blood flow (3 ± 1 mL/min/100 mL versus 2.7 ± 1 mL/min/100 mL, p = 0.16), and peripheral vascular resistance (30 ± 9 units versus 34±9 units, p = 0.21), respectively. Both groups showed a significant and similar increase in mean blood pressure (∆ = 15 ± 7 mmHg versus 14 ± 7 mmHg, p = 0.86), heart rate (∆ = 12 ± 8 bpm versus 13 ± 7 bpm, p = 0.86), and forearm blood flow (∆ = 0.8 ± 1.2 mL/min/100 mL versus 1.4 ± 1.1 mL/min/100 mL, p = 0.25), respectively, during exercise. However, individuals in the FH+ group showed no reduction in peripheral vascular resistance during exercise, which was observed in the FH- group (∆ = -0.4 ± 8.6 units versus -7.2 ± 6.3 units, p = 0.03). Conclusion: Normotensive individuals with a family history of hypertension present an impaired peripheral vascular resistance response to exercise.</p></div>