The life-span trajectory of visual perception of 3D objects Erez Freud Marlene Behrmann 10.1184/R1/5558179.v1 https://kilthub.cmu.edu/articles/journal_contribution/The_life-span_trajectory_of_visual_perception_of_3D_objects/5558179 Deriving a 3D structural representation of an object from its 2D input is one of the great challenges for the visual system and yet, this type of representation is critical for the successful recognition of and interaction with objects. Perhaps reflecting the importance of this computation, infants have some sensitivity to 3D structural information, and this sensitivity is, at least, partially preserved in the elderly population. To map precisely the life-span trajectory of this key visual computation, in a series of experiments, we compared the performance of observers from ages 4 to 86 years on displays of objects that either obey or violate possible 3D structure. The major findings indicate that the ability to derive fine-grained 3D object representations emerges after a prolonged developmental trajectory and is contingent on the explicit processing of depth information even in late childhood. In contrast, the sensitivity to object 3D structure remains stable even through late adulthood despite the overall reduction in perceptual competence. Together, these results uncover the developmental process of an important perceptual skill, revealing that the initial, coarse sensitivity to 3D information is refined, automatized and retained over the lifespan. 2017-09-08 00:00:00 cognitive ageing object vision perception