TY - DATA T1 - Supplementary Methods from Recombination rate plasticity: revealing mechanisms by design PY - 2017/10/16 AU - Laurie Stevison AU - Stephen Sefick AU - Chase Rushton AU - Rita Graze UR - https://rs.figshare.com/articles/journal_contribution/Supplementary_Methods_from_Recombination_rate_plasticity_revealing_mechanisms_by_design/5501509 DO - 10.6084/m9.figshare.5501509.v1 L4 - https://ndownloader.figshare.com/files/9520666 KW - recombination KW - Drosophila KW - crossing over KW - meiosis KW - oogenesis KW - plasticity N2 - For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex, and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in D. pseudoobscura.This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. ER -