10.6084/m9.figshare.c.3716131_D2.v1 Sarah Osman Simon Horn Darren Brady Stephen McMahon Ahamed Yoosuf Darren Mitchell Karen Crowther Ciara Lyons Alan Hounsell Kevin Prise Conor McGarry Suneil Jain Joe O’Sullivan Additional file 2: Figure S2. of Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life 2017 Springer Nature Permanent prostate brachytherapy DNA damage biomarkers (γH2AX and 53BP1) EPIC Sector analysis 2017-03-14 05:00:00 article https://springernature.figshare.com/articles/journal_contribution/Additional_file_2_Figure_S2_of_Prostate_cancer_treated_with_brachytherapy_an_exploratory_study_of_dose-dependent_biomarkers_and_quality_of_life/4750252 Top; dose rate (cGy/h) as a function of time since implant for 125I monotherapy plotted using the equation, Dose rate t = m P D ln 2 t 1 2 .2 t t 1 2 $$Dose\ rate\ (t)= m P D\left(\frac{ \ln 2}{t_{\raisebox{1ex}{1}\!\left/ \!\raisebox{-1ex}{2}\right.}}\right){.2}^{\left(\frac{t}{t_{\raisebox{1ex}{1}\!\left/ \!\raisebox{-1ex}{2}\right.}}\right)}$$ , where t is the elapsed time, mPD is the minimum peripheral dose (=145 Gy for 125I) and t 1 2 $${t}_{\raisebox{1ex}{1}\!\left/ \!\raisebox{-1ex}{2}\right.}$$ is the half-life (=59.43 days for 125I). Bottom; the time required to deliver relative fraction of the prescribed dose, Fractional dose t = 1 − e − t . ln 2 t 1 2 $$Fractional\ dose(t)=1-{e}^{-\left(\frac{t. \ln 2}{t_{\raisebox{1ex}{1}\!\left/ \!\raisebox{-1ex}{2}\right.}}\right)}$$ . Reference: Dale RG. The applications of the linear-quadratic dose effect equation to fractionated and protracted therapy. Br J Radiol 1985; 58: 515–28. (PDF 178 kb)