10.1371/journal.pone.0016803.g001 Huaqiu Zhang Huaqiu Zhang H. James Cao H. James Cao Harold K. Kimelberg Harold K. Kimelberg Min Zhou Min Zhou Expression of VRAC currents in CA1 pyramidal neurons in hippocampal slices. Public Library of Science 2013 vrac currents ca1 pyramidal neurons hippocampal 2013-02-20 20:33:04 Figure https://plos.figshare.com/articles/figure/_Expression_of_VRAC_currents_in_CA1_pyramidal_neurons_in_hippocampal_slices_/468637 <p><b>A</b>, Shows a hypoosmotic medium -activated -chloride conductance (HAC) from a pyramidal neuron. After initial recording in the isoosmotic medium (iso, dashed line) as control, the perfusion was switched to the hypoosmotic medium (hypo, −50 mOsm) for 60 min. The neuronal Na<sup>+</sup>, Ca<sup>2+</sup> and K<sup>+</sup> channel conductances were pharmacologically inhibited (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0016803#s2" target="_blank">Methods</a>). The cell was held at −40 mV in the resting condition, and a pair of alternate voltage pulses at ±40 mV was delivered to the cell every 15 second. Each test pulse in the pair was 1 second long and was separated from each other by 300 ms at −40 mV resting voltage (see the shadowed inset in <b>A</b> for protocol). Because each series of paired alternate pulses was delivered every 15 s, the time scale bar shown under <b>A</b> includes all the unrecorded time periods, or the duration of alternate pulses induced currents are not proportional to the applied time scale. A progressive increase of chloride conductance was recorded over a 60 min of hypo exposure. <b>B</b>. A whole-cell chloride conductance recording with 30 min of hypo exposure. The HAC slowly inactivated after switching the perfusion to the iso. In the same recording, a voltage step protocol was delivered to the cell at the times indicated as “<b>a</b>”, “<b>b</b>” and “<b>c</b>” that represent the chloride currents at control, HAC and recovery, respectively. The I-V curves in <b>C</b> were at times of “a” and “b” and constructed by plotting the steady-state currents against the applied voltages, ranging from −100 mV to +100 mV in a 20 mV increments (see shadowed inset in <b>B</b>). In all the I-V curves in <b>C</b>, the chloride conductance was outwardly rectifying and reversed at around −40 mV.</p>