TY - DATA T1 - Table S8 from Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation PY - 2017/02/15 AU - Alexander Graf AU - Diana Coman AU - R. Glen Uhrig AU - Sean Walsh AU - Anna Flis AU - Mark Stitt AU - Wilhelm Gruissem UR - https://rs.figshare.com/articles/dataset/Table_S8_from_Parallel_analysis_of_Arabidopsis_circadian_clock_mutants_reveals_different_scales_of_transcriptome_and_proteome_regulation/4653466 DO - 10.6084/m9.figshare.4653466.v1 L4 - https://ndownloader.figshare.com/files/7587442 KW - circadian clock KW - photoperiod KW - transcriptomics KW - proteomics KW - Arabidopsis thaliana N2 - The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. ER -