TY - DATA T1 - Lying in wait: deep and shallow evolution of dacite beneath Volcán de Santa María, Guatemala PY - 2016/06/21 AU - B. S. Singer AU - B. R. Jicha AU - J. H. Fournelle AU - B. L. Beard AU - C. M. Johnson AU - K. E. Smith AU - S. E. Greene AU - N. T. Kita AU - J. W. Valley AU - M. J. Spicuzza AU - N. W. Rogers UR - https://geolsoc.figshare.com/articles/dataset/Lying_in_wait_deep_and_shallow_evolution_of_dacite_beneath_Volc_n_de_Santa_Mar_a_Guatemala/3453293 DO - 10.6084/m9.figshare.3453293.v1 L4 - https://ndownloader.figshare.com/files/5422226 L4 - https://ndownloader.figshare.com/files/5422229 L4 - https://ndownloader.figshare.com/files/5422232 L4 - https://ndownloader.figshare.com/files/5422235 KW - basaltic andesite scoria KW - Santa Mar ía Guatemala KW - SiO 2 increases KW - Santiaguito dacite lava domes KW - basaltic andesite KW - 8.5 km 3 KW - K 2 O KW - 8 km 3 KW - H 2 O contents KW - 1902 eruption crater KW - silicic magma body KW - pumice KW - wt KW - dacitic KW - basaltic andesite magma KW - 1902 dacite KW - basaltic andesite lava KW - 25 kyr period KW - 1972 Santiaguito dacite lava KW - Basaltic andesite inclusions KW - Geology N2 - The Plinian eruption in October 1902 of 8.5 km3of dacitic pumice and minor basaltic andesite scoria and ash at Volcán de Santa María, Guatemala violently interrupted a 25 kyr period of repose that had followed ∼75 kyr of cone-growth via extrusion of 8 km3 of basaltic andesite lava. Two-oxide and pyroxene thermometry reveal an oxidized (Ni-NiO+2 log units) and thermally-zoned magma body in which basaltic andesite with 54 wt% SiO2 at 1020 °C and dacite with 65 wt% SiO2 at 870 °C coexisted. Plagioclase in dacite pumice and basaltic andesite scoria shows remarkably similar zoning characterized by repeated excursions toward high anorthite and increases in Mg, Fe, and Sr associated with resorption surfaces along which dacitic to rhyolitic melt inclusions are trapped. The melt inclusions increase slightly in K2O as SiO2 increases from 69 to 77 wt%, whereas H2O contents between 5.2 and 1.4 wt% drop with increasing K2O. These observations suggest that crystallization of the plagioclase, and evolution of a high-silica rhyolitic residual melt, occurred mainly in the conduit as the compositionally-zoned magma body decompressed and degassed from >180 MPa, or >5 km depth, toward the surface. The similarity of plagioclase composition, zoning, and melt inclusion compositions in pumice and scoria suggests that crystals which grew initially in the cooler dacite, were exchanged between dacitic and basaltic andesite magma as the two magmas mingled and partially mixed en route to the surface. Since 1922>1 km3 of dacitic magma similar to the 1902 pumice has erupted effusively to form the Santiaguito dome complex in the 1902 eruption crater. Trace element and Sr–Nd–Pb–O and U–Th isotope data indicate that cone-forming basaltic andesite lavas record processes operating in the deep crust in which wallrock heating sufficient to induce partial melting and assimilation involved several pulses of recharging mantle-derived basalt over at least 50 kyr. A fundamental shift in process coincides with the termination of cone-building at 25 ka: the 1902 dacite reflects >40% fractional crystallization of plagioclase+amphibole+clinopyroxene+magnetite from ∼20 km3 of basaltic andesite magma left-over following cone-building that cooled slowly without assimilating additional crust. Small contrasts in Sr–Nd–Pb ratios, a modest contrast in δ18O(WR), and a large difference in the (238U/230Th) activity ratio between the 1902 scoria and dacite indicate that these two magmas are not consanguineous, rather this basaltic andesite is likely a recent arrival in the system. A glass–whole rock–magnetite–amphibole 238U–230Th isochron of 9.5±2.5 ka for a 1972 Santiaguito dacite lava suggests that deeper, occluded portions of the silicic magma body, not erupted in 1902, incubated in the crust for at least 10 kyr prior to the 1902 eruption. Basaltic andesite inclusions in the Santiaguito dacite lava domes are interpreted to be modified remnants of the cone-forming magma parental to the 1902 dacite. ER -