Neogene rotations in the Jiuquan Basin, Hexi Corridor, China YanMaodu FangXiaomin Van Der VooRob SongChunhui LiJijun 2016 <p>Vertical-axis rotations of blocks in/around the Tibetan Plateau can be attributed to the India–Asia collision. Study of the vertical-axis rotations of these blocks will increase our understanding of the mechanisms and kinematics of continent–continent collisions. We report here a new palaeomagnetic study of rotations using data from four localities (five magnetostratigraphy sections) in the Jiuquan Basin. Our study indicates that the mean declinations of each section are different from each other, similar to what has been observed in the other localities in the NE Tibetan Plateau. However, using the mean directions of every 100 m of section, we observe that the four localities have similar sequential patterns of rotations during the last 13 Ma: significant continuous counterclockwise before <em>c.</em> 8.0 Ma, insignificant rotations between 8.0–4.0 Ma, and slight clockwise rotation after 4.0 Ma. This indicates that, rather than being a record of spatially varying declinations, it is a temporal variation in the occurrence of regional rotations. Combined with other geological evidence, the rotation patterns may suggest two major tectonic activity phases of the northeastern Tibetan Plateau during the last 13 Ma: an eastward extrusion and strike-slip dominant phase before 8.0 Ma, a significant shortening and a rapid uplift dominant phase after 8.0 Ma. </p>