Tuning Proton Disorder in 3,5-Dinitrobenzoic Acid Dimers: the Effect of Local Environment Andrew O. F. Jones Nicholas Blagden Garry J. McIntyre Andrew Parkin Colin C. Seaton Lynne H. Thomas Chick C. Wilson 10.1021/cg300906j.s001 https://acs.figshare.com/articles/dataset/Tuning_Proton_Disorder_in_3_5_Dinitrobenzoic_Acid_Dimers_the_Effect_of_Local_Environment/2445754 The carboxylic acid dimer is a frequently observed intermolecular association used in crystal engineering and design, which can show proton disorder across its hydrogen bonds. Proton disorder in benzoic acid dimers is a dynamic, temperature-dependent process whose reported occurrence is still relatively rare. A combination of variable temperature X-ray and neutron diffraction has been applied to demonstrate the effect of local crystalline environment on both the degree and onset of proton disorder in 3,5-dinitrobenzoic acid dimers. Dimers which have significantly asymmetric local intermolecular interactions are found to have a higher onset temperature for occupation of a second hydrogen atom site to be observed, indicating a greater energy asymmetry between the two configurations. Direct visualization of the electron density of hydrogen atoms within these dimers using high resolution X-ray diffraction data to characterize this disorder is shown to provide remarkably good agreement with that derived from neutron data. 2016-02-19 23:35:02 onset diffraction Local EnvironmentThe carboxylic acid dimer data Dimer neutron proton disorder benzoic acid dimers hydrogen atom site Tuning Proton Disorder