Length Fractionation of Boron Nitride Nanotubes Using Creamed Oil-in-Water Emulsions Yiu-Ting R. Lau Maho Yamaguchi Xia Li Yoshio Bando Dmitri Golberg Françoise M. Winnik 10.1021/la404961p.s001 https://acs.figshare.com/articles/journal_contribution/Length_Fractionation_of_Boron_Nitride_Nanotubes_Using_Creamed_Oil_in_Water_Emulsions/2320372 The fractionation by length of multiwalled boron nitride nanotubes (BNNTs) was achieved by emulsification and creaming of an oil/water/surfactant mixture. The length separation is based on the fact that nanoparticle-coated oil droplets polydisperse in size move toward the upper surface or the bottom of an emulsified mixture depending on the density of the droplets, such that droplets of different sizes are located at different heights. By sampling heightwise an unstable hexane/water/Tween 20/BNNT (1–20 μm long) emulsion, we observed that the lengths of the BNNTs adsorbed on the droplets display a strong correlation with the droplets sizes, thus leading to selective separation of the BNNT lengths, as confirmed by dark-field optical imaging and dynamic light scattering. This method may potentially be extended to other high aspect ratio nanomaterials exhibiting emulsification properties similar to those of BNNTs. 2014-02-25 00:00:00 BNNT lengths mixture emulsification properties aspect ratio nanomaterials multiwalled boron nitride nanotubes Length Fractionation droplets sizes droplets display sampling heightwise Boron Nitride Nanotubes size move length separation