10.1021/la503401d.s001 Joon Soo Park Joon Soo Park Nam-In Goo Nam-In Goo Dong-Eun Kim Dong-Eun Kim Mechanism of DNA Adsorption and Desorption on Graphene Oxide American Chemical Society 2014 probe DNA Graphene OxideGraphene oxide preadsorbed probe DNA 2014-10-28 00:00:00 Journal contribution https://acs.figshare.com/articles/journal_contribution/Mechanism_of_DNA_Adsorption_and_Desorption_on_Graphene_Oxide/2241157 Graphene oxide (GO) adsorbing a fluorophore-labeled single-stranded (ss) DNA serves as a sensor system because subsequent desorption of the adsorbed probe DNA from GO in the presence of complementary target DNA enhances the fluorescence. In this study, we investigated the interaction of single- and double-stranded (ds) DNAs with GO by using a fluorescently labeled DNA probe. Although GO is known to preferentially interact with ssDNA, we found that dsDNA can also be adsorbed on GO, albeit with lower affinity. Furthermore, the status of ssDNA or dsDNA previously adsorbed on the GO surface was investigated by adding complementary or noncomplementary DNA (cDNA or non-cDNA) to the adsorption complex. We observed that hybridization occurred between the cDNA and the probe DNA on the GO surface. On the basis of the kinetics driven by the incoming additional DNA, we propose a mechanism for the desorption of the preadsorbed probe DNA from the GO surface: the desorption of the GO-adsorbed DNA was facilitated following its hybridization with cDNA on the GO surface; when the GO surface was almost saturated with the adsorbed DNA, nonspecific desorption dominated the process through a simple displacement of the GO-adsorbed DNA molecules by the incoming DNA molecules because of the law of mass action. Our results can be applied to design appropriate DNA probes and to choose proper GO concentrations for experimental setups to improve specific signaling in many biosensor systems based on the GO platform.