Sato, Ryuhei Ohkuma, Shohei Shibuta, Yasushi Shimojo, Fuyuki Yamaguchi, Shu Proton Migration on Hydrated Surface of Cubic ZrO<sub>2</sub>: <i>Ab initio</i> Molecular Dynamics Simulation The proton migration on a cubic ZrO<sub>2</sub> (110) surface is investigated by <i>ab initio</i> molecular dynamics simulation. H<sub>2</sub>O molecules form a hydrated multilayer on a ZrO<sub>2</sub> surface consisting of terminating H<sub>2</sub>O adsorbates and hierarchically hydrogen-bonded H<sub>2</sub>O layers. A portion of H<sub>2</sub>O molecules chemisorbed on zirconium atoms (Zr–OH<sub>2</sub>) dissociates into H<sup>+</sup> and OH<sup>–</sup>, forming polydentate and monodentate hydroxyls (>OH<sup>+</sup> and Zr–OH<sup>–</sup>). The coexistence of acid and base sites (Zr–OH<sub>2</sub> and Zr–OH<sup>–</sup>) in the equilibrium state is confirmed by analyses of both forward and reverse reactions of H<sub>2</sub>O dissociation on the ZrO<sub>2</sub> surface. Proton hopping from Zr–OH<sub>2</sub> to Zr–OH<sup>–</sup> occurs by both a direct proton transfer and a chain protonation reaction via surrounding H<sub>2</sub>O molecules. During these processes, Zr–OH<sub>2</sub> donates an extra proton to Zr–OH<sup>–</sup> directly or via H<sub>2</sub>O molecules in the multilayers, indicating that the coexistence of Zr–OH<sub>2</sub> and Zr–OH<sup>–</sup> is a necessary condition for the proton conduction on the oxide surface with various basicities. chain protonation reaction;H 2O adsorbates;zirconium atoms;proton transfer;ZrO 2 surface;equilibrium state;H 2O molecules chemisorbed;H 2O dissociation;proton conduction;Proton Migration;dynamics simulation;oxide surface;ab initio;H 2O molecules;OH;Hydrated Surface;h 2O molecules form;base sites 2015-12-31
    https://acs.figshare.com/articles/media/Proton_Migration_on_Hydrated_Surface_of_Cubic_ZrO_sub_2_sub_i_Ab_initio_i_Molecular_Dynamics_Simulation/2093428
10.1021/acs.jpcc.5b09026.s003