Moore, Gary F. Sharp, Ian D. A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors We report a method for facile connection of a nickel bisdiphosphine-based functional mimic of the active site of hydrogenase to photocathodes that are relevant to artificial photosynthesis. This procedure exploits the UV-induced immobilization chemistry of alkenes to gallium phosphide and silicon surfaces. The photochemical grafting provides a means for patterning molecular linkers with attachment points to catalysts. Successful grafting is characterized by grazing angle attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR), which shows catalyst vibrational modes, as well as X-ray photoelectron spectroscopy (XPS), which confirms the presence of intact Ni complex on the surface. The modular nature of this approach allows independent modification of the light absorber, bridging material, anchoring functionality, or catalyst as new materials and discoveries emerge. XPS;light absorber;gallium phosphide;silicon surfaces;material;catalyst vibrational modes;attachment points;reflection Fourier;angle attenuated;procedure exploits;spectroscopy 2015-12-16
    https://acs.figshare.com/articles/journal_contribution/A_Noble_Metal_Free_Hydrogen_Evolution_Catalyst_Grafted_to_Visible_Light_Absorbing_Semiconductors/2022522
10.1021/jz400028z.s001