TY - DATA T1 - A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors PY - 2015/12/16 AU - Gary F. Moore AU - Ian D. Sharp UR - https://acs.figshare.com/articles/journal_contribution/A_Noble_Metal_Free_Hydrogen_Evolution_Catalyst_Grafted_to_Visible_Light_Absorbing_Semiconductors/2022522 DO - 10.1021/jz400028z.s001 L4 - https://ndownloader.figshare.com/files/3593814 KW - XPS KW - light absorber KW - gallium phosphide KW - silicon surfaces KW - material KW - catalyst vibrational modes KW - attachment points KW - reflection Fourier KW - angle attenuated KW - procedure exploits KW - spectroscopy N2 - We report a method for facile connection of a nickel bisdiphosphine-based functional mimic of the active site of hydrogenase to photocathodes that are relevant to artificial photosynthesis. This procedure exploits the UV-induced immobilization chemistry of alkenes to gallium phosphide and silicon surfaces. The photochemical grafting provides a means for patterning molecular linkers with attachment points to catalysts. Successful grafting is characterized by grazing angle attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR), which shows catalyst vibrational modes, as well as X-ray photoelectron spectroscopy (XPS), which confirms the presence of intact Ni complex on the surface. The modular nature of this approach allows independent modification of the light absorber, bridging material, anchoring functionality, or catalyst as new materials and discoveries emerge. ER -