10.6084/m9.figshare.1290473.v2 Youyou Xiong Youyou Xiong Uta Krogmann Uta Krogmann Gediminas Mainelis Gediminas Mainelis Lisa A. Rodenburg Lisa A. Rodenburg Clinton J. Andrews Clinton J. Andrews Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States Taylor & Francis Group 2015 voc iaq Green building tax credit pm indoor air quality air quality measures sampling air quality measurements cancer health effects concentration GBTC health effects exposure limits LEED Volatile Organic Compounds 2015-01-21 20:39:15 Journal contribution https://tandf.figshare.com/articles/journal_contribution/Indoor_air_quality_in_green_buildings_A_case_study_in_a_residential_high_rise_building_in_the_northeastern_United_States/1290473 <div><p>Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should include mixed mode thermal comfort models, semi-volatile organic compounds, assessment of new chemicals, and permissible exposure levels of many known indoor VOCs and bioaerosols. Plus, the relationship between energy consumption and IAQ, and tenant education on health effects of indoor pollutants and their sources may need more attention in IAQ investigations in green buildings.</p></div>