Zedini, Emna Kammoun, Abla Alouini, Mohamed-Slim Performance of Multibeam Very High Throughput Satellite Systems Based on FSO Feeder Links with HPA Nonlinearity Due to recent advances in laser satellite communications technology, free-space optical (FSO) links are presented as an ideal alternative to the conventional radio frequency (RF) feeder links of the geostationary satellite for next generation very high throughput satellite (VHTS) systems. In this paper, we investigate the performance of multibeam VHTS systems that account for nonlinear high power amplifiers at the transparent fixed gain satellite transponder. Specifically, we consider the forward link of such systems, where the RF user link is assumed to follow the shadowed Rician model and the FSO feeder link is modeled by the Gamma-Gamma distribution in the presence of beam wander and pointing errors where it operates under either the intensity modulation with direct detection or the heterodyne detection. Moreover, zero-forcing precoder is employed to mitigate the effect of inter-beam interference caused by the aggressive frequency reuse in the user link. The performance of the system under study is evaluated in terms of the outage probability, the average bit-error rate (BER), and the ergodic capacity that are derived in exact closed-forms in terms of the bivariate Meijer's G function. Simple asymptotic results for the outage probability and the average BER are also obtained at high signal-to-noise ratio. Very high throughput satellite (VHTS) systems;Free-space optical (FSO) feeder links;Atmospheric turbulence;Beam wander;Pointing errors;High-power amplifier (HPA);Traveling wave tube amplifier (TWTA);Solid state power amplifier (SSPA) 2020-06-05
    https://techrxiv.figshare.com/articles/preprint/Performance_of_Multibeam_Very_High_Throughput_Satellite_Systems_Based_on_FSO_Feeder_Links_with_HPA_Nonlinearity/12413384
10.36227/techrxiv.12413384.v1