Evidence for the Robustness of Protein Complexes to Inter-Species Hybridization LeducqJean-Baptiste CharronGuillaume DissGuillaume Gagnon-ArsenaultIsabelle K. DubéAlexandre R. LandryChristian 2012 <div><p>Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein–protein interactions (PPIs) among closely related species and their hybrids. We examine <em>in vivo</em> the architecture of protein complexes in two yeast species (<em>Saccharomyces cerevisiae</em> and <em>Saccharomyces kudriavzevii</em>) that diverged 5–20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC), which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.</p> </div>