Kimberg, Victor Bin Zhang, Song Rohringer, Nina Number of photons in the C 1<em>s</em><sup>−1</sup> → <em>X</em> AXE channel as a function of the number of photons in the incoming XFEL pulse of a duration of 50 fs for an isotropic ensemble () and for pre-aligned ensembles with 〈cos <sup>2</sup>ζ〉 = 0.51() and 〈cos <sup>2</sup>ζ〉 = 0.64(▵) <p><strong>Figure 3.</strong> Number of photons in the C 1<em>s</em><sup>−1</sup> → <em>X</em> AXE channel as a function of the number of photons in the incoming XFEL pulse of a duration of 50 fs for an isotropic ensemble () and for pre-aligned ensembles with 〈cos <sup>2</sup>ζ〉 = 0.51() and 〈cos <sup>2</sup>ζ〉 = 0.64(▵).</p> <p><strong>Abstract</strong></p> <p>We theoretically demonstrate the feasibility of x-ray lasing in the CO molecule by the core ionization of the C K- and O K-shell by x-ray free-electron laser sources. Our numerical simulations are based on the solution of generalized Maxwell–Bloch equations, accounting for the electronic and nuclear degrees of freedom. The amplified x-ray emission pulses have an extremely narrow linewidth of about 0.1 eV and a pulse duration shorter than 30 fs. We compare x-ray lasing transitions to the three lowest electronic states of singly ionized CO. The dependence of the lasing efficiency on the spectral width of the x-ray fluorescence band, value and orientation of the electronic transition dipole moment, lifetime of the core-excited state and the duration of the pump pulse is analysed. Using a pre-aligned molecular ensemble substantially increases the amplified emission. Moreover, by controlling the molecular alignment and thereby the alignment of the transition dipole moment polarization, the control of the emitted x-ray radiation is achievable. Preparing the initial vibrational quantum state, the x-ray emission frequency can be tuned within the fluorescence band. The present scheme is applicable to other diatomic systems, thereby extending the spectral range of coherent x-ray radiation sources based on stimulated x-ray emission on bound transitions.</p> CO molecule;fluorescence band;vibrational quantum state;lasing efficiency;C 1;radiation;XFEL pulse;ensemble;moment polarization;emission;photon;axe;alignment;source;50 fs;transition;30 fs;pulse duration;core ionization;C K;Atomic Physics;Molecular Physics 2013-08-13
    https://iop.figshare.com/articles/figure/_Number_of_photons_in_the_C_1_em_s_em_sup_1_sup_em_X_em_AXE_channel_as_a_function_of_the_number_of_p/1012418
10.6084/m9.figshare.1012418.v1