TY - DATA T1 - (a) Quasienergies and (b) time-averaged transition probabilities as a function of the intensity of the cavity-mode field PY - 2013/07/05 AU - Di Zhao AU - Fu-li Li AU - Shih-I Chu UR - https://iop.figshare.com/articles/figure/_a_Quasienergies_and_b_time_averaged_transition_probabilities_as_a_function_of_the_intensity_of_the_/1012237 DO - 10.6084/m9.figshare.1012237.v1 L4 - https://ndownloader.figshare.com/files/1480059 KW - femtosecond enhancement cavity KW - intensity KW - cep KW - HHG power spectra KW - multiphoton resonance processes KW - multiphoton resonance dynamics KW - laser fields KW - figure 4. Abstract KW - Atomic Physics KW - Molecular Physics N2 - Figure 5. (a) Quasienergies and (b) time-averaged transition probabilities as a function of the intensity of the cavity-mode field. The resonance position is at 4.395 × 1011 W cm−2. (c) The enhancement of the HHG power spectra by tuning the intensity of the cavity-mode field. For clarity, HHG peaks of the comb structure are connected by a line. The energy separation is fixed at ωαβ = 0.25 au. The CEP shift is fixed at Δ = 0.1684 × 2π. Other parameters used are the same as those in figure 4. Abstract We present a theoretical investigation of the multiphoton resonance dynamics driven by intense frequency-comb and cavity-mode fields inside a femtosecond enhancement cavity (fsEC). The many-mode Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and laser fields. The quasienergy structure driven by the frequency-comb laser field is modified by coupling the cavity-mode field and the multiphoton resonance processes between modified quasienergy states, resulting in the generation of even-order harmonics. The high-order harmonic generation (HHG) from a two-level system driven by the laser fields can be coherently controlled by tuning the laser parameters. In particular, the tuning intensity of the cavity-mode field allows one to coherently control the HHG power spectra without changing the absolute positions of comb frequencies. ER -