10.6084/m9.figshare.1012100.v1
Yanpeng Liu
Jiaolong Zeng
Jianmin Yuan
The <sup>1</sup>S partial photoionization cross section of the core-excited state 1s2s<sup>2</sup>2p<sup>5</sup> <sup>1</sup>P<sup>o</sup> in the vicinity of the resonance 1s<sup>0</sup>2s<sup>2</sup>2p<sup>6</sup> <sup>1</sup>S
2013
IOP Publishing
calculation
resonance 1
Auger energy
velocity forms
autoionization width
energy region
1 S
Auger width
photoionization
method
27 target states
continuum channels
23L
section
Auger spectra
configuration interaction
Ne 2
resonance energy
2013-06-27 00:00:00
article
https://iop.figshare.com/articles/_The_sup_1_sup_S_partial_photoionization_cross_section_of_the_core_excited_state_1s2s_sup_2_sup_2p_s/1012100
<p><strong>Figure 2.</strong> The <sup>1</sup>S partial photoionization cross section of the core-excited state 1s2s<sup>2</sup>2p<sup>5</sup> <sup>1</sup>P<sup>o</sup> in the vicinity of the resonance 1s<sup>0</sup>2s<sup>2</sup>2p<sup>6</sup> <sup>1</sup>S. The full and dashed lines refer to the length and velocity forms, respectively.</p> <p><strong>Abstract</strong></p> <p>A close-coupling calculation is performed for the photoionization cross section of the high-lying core-excited state 1s2s<sup>2</sup>2p<sup>5</sup> <sup>1</sup>P<sup>o</sup> of Ne<sup>2 +</sup> in the energy region of the double <em>K</em>-vacancy resonance 1s<sup>0</sup>2s<sup>2</sup>2p<sup>6</sup> <sup>1</sup>S. The calculation is carried out by using the <em>R</em>-matrix method in the <em>LS</em>-coupling scheme, which includes 27 target states and extensive configuration interaction. The <em>KK</em>-<em>KL</em> x-ray energy, rate and autoionization width of the double <em>K</em>-vacancy state, together with <em>KK</em>-<em>KLL</em> Auger energies and branching ratios of the main channels, are obtained from the cross sections and the contributions of these channels. The calculated resonance energy and x-ray rate are in good agreement with the existing experimental and theoretical results. For the Auger width, our result agrees well with the available experimental result and it is very close to the average of other theoretical data, which shows considerable differences with each other. The Auger energy of the predominate channel <em>KK</em>-<em>KL</em><sub>23</sub><em>L</em><sub>23</sub> <sup>2</sup>D is in rather good agreement with recent experiments on the Auger spectra. Our branching ratios for the channels <em>KK</em>-<em>KL</em><sub>23</sub><em>L</em><sub>23</sub> <sup>2</sup>D and <em>KK</em>-<em>KL</em><sub>23</sub><em>L</em><sub>23</sub> <sup>2</sup>S are larger than the results obtained by the multi-configuration Dirac–Fock method by ~20% on average, which may be due to the coupling of the continuum channels.</p>