10.6084/m9.figshare.1012014.v1 Sylvain Nascimbène Sylvain Nascimbène (a) Spectrum of Bogoliubov excitations (red dots) calculated for <em>J<sub>z</sub></em> = 0.2 δ and <em>J</em> = Δ<sup>(2)</sup>, and compared with the prediction of Kitaev's model with <em>J</em> = Δ = Δ<sup>(2)</sup> (black dots) IOP Publishing 2013 latter acts Majorana edge state topological superfluidity Majorana fermions Majorana states 1 D gas ultracold fermionic atoms Feshbach molecules topological superfluid perturbative limit 1 D system Cooper pair reservoir superfluid gap topological superfluid boundaries 2 D topological superfluid phase Density distribution fermionic atoms Bogoliubov excitations uniform gas 1 D tube Atomic Physics Molecular Physics 2013-06-24 00:00:00 Figure https://iop.figshare.com/articles/figure/_a_Spectrum_of_Bogoliubov_excitations_red_dots_calculated_for_em_J_sub_z_sub_em_0_2_and_em_J_em_sup_/1012014 <p><strong>Figure 3.</strong> (a) Spectrum of Bogoliubov excitations (red dots) calculated for <em>J<sub>z</sub></em> = 0.2 δ and <em>J</em> = Δ<sup>(2)</sup>, and compared with the prediction of Kitaev's model with <em>J</em> = Δ = Δ<sup>(2)</sup> (black dots). (b) Density distribution along <em>x</em> of a zero-energy Majorana state, in planes <em>A</em> (red line) and <em>B</em> (blue line), revealing the non-local character of Majorana states. In the perturbative regime <em>J</em> δ, the population in <em>B</em> remains small.</p> <p><strong>Abstract</strong></p> <p>We propose an experimental implementation of a topological superfluid with ultracold fermionic atoms. An optical superlattice is used to juxtapose a 1D gas of fermionic atoms and a 2D conventional superfluid of condensed Feshbach molecules. The latter acts as a Cooper pair reservoir and effectively induces a superfluid gap in the 1D system. Combined with a spin-dependent optical lattice along the 1D tube and laser-induced atom tunnelling, we obtain a topological superfluid phase. In the regime of weak couplings to the molecular field and for a uniform gas, the atomic system is equivalent to Kitaev's model of a p-wave superfluid. Using a numerical calculation, we show that the topological superfluidity is robust beyond the perturbative limit and in the presence of a harmonic trap. Finally, we describe how to investigate some physical properties of the Majorana fermions located at the topological superfluid boundaries. In particular, we discuss how to prepare and detect a given Majorana edge state.</p>