EACs (equivalent air concentrations) of CFCs and SF<sub>6</sub> Tetsuya Hiyama Kazuyoshi Asai Alexander B Kolesnikov Leonid A Gagarin Victor V Shepelev 10.6084/m9.figshare.1011862.v1 https://iop.figshare.com/articles/dataset/___EACs_equivalent_air_concentrations_of_CFCs_and_SF_sub_6_sub_/1011862 <p><b>Table 3.</b>  EACs (equivalent air concentrations) of CFCs and SF<sub>6</sub>. Estimated recharge years are also shown. </p> <p><strong>Abstract</strong></p> <p>Detection of changes in the hydrological cycles of permafrost regions is a critical issue in hydrology. Better understanding of groundwater dynamics in permafrost regions is needed to assess the vulnerability of the cryolithic water environment to changing climate. However, little is known about the age of groundwater in the Siberian Arctic region. In order to determine the residence time of permafrost groundwater in eastern Siberia, transient tracers including tritium (<sup>3</sup>H), chlorofluorocarbons (CFCs), and sulfur hexafluoride (SF<sub>6</sub>) were used to analyze a mixture of supra-permafrost and intra-permafrost groundwater in the middle of the Lena River basin. Tritium analyses showed that the concentration ranges from 1.0 to 16.8 TU, and the apparent age of groundwater ranged from around 1 to 55 years. One of the spring waters appeared to contain more than 90% water recharged by precipitation before the 1960s nuclear testing era, and the water could be partly sourced from thawing permafrost. Comparisons of apparent groundwater ages estimated from different tracers imply that <sup>3</sup>H and CFC-12 are the most applicable to groundwater vulnerability assessments in this region. Because the apparent age is a mixture of those from supra-permafrost and intra-permafrost groundwater, further analysis would be required to assess the contribution ratio of the two types of groundwater.</p> 2013-09-11 00:00:00 permafrost regions Lena River basin tu eac equivalent air concentrations Siberian Arctic region sf groundwater vulnerability assessments cryolithic water environment cfc Environmental Science