Sensitivity analysis on the difference between the CONV and TREND scenarios for GHG emissions and consumption at world level by 2050 H Valin P Havlík A Mosnier M Herrero E Schmid M Obersteiner 10.6084/m9.figshare.1011754.v1 https://iop.figshare.com/articles/dataset/___Sensitivity_analysis_on_the_difference_between_the_CONV_and_TREND_scenarios_for_GHG_emissions_and/1011754 <p><b>Table 4.</b>  Sensitivity analysis on the difference between the CONV and TREND scenarios for GHG emissions and consumption at world level by 2050. Abbreviations: HI  ='High-Input'; SI  ='Sust-Intens'; FT  ='Free-Tech'; LUC  =  land use change. </p> <p><strong>Abstract</strong></p> <p>In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.</p> 2013-07-16 00:00:00 conv luc factor productivity gains 2050. Abbreviations si hi productivity increases GHG emissions livestock productivity gains emissions savings GHG emission land intensification food provision benefits productivity pathways GHG savings ft land use change emissions livestock sector factor benefits demand side equilibrium model GLOBIOM TREND scenarios rebound effect food supply side greenhouse gas productivity gains land use change world level livestock feed efficiency scenarios emissions growth Environmental Science