figshare
Browse

The application of portable XRF and benchtop SEM-EDS to Cu-Pd exploration in the Coldwell Alkaline Complex, Ontario, Canada

Posted on 2016-08-01 - 14:55
Mineral exploration is increasingly taking advantage of real time techniques that dramatically reduce the costs and time taken to obtain results compared to traditional analytical methods. Portable X-ray fluorescence (pXRF) is now a wellestablished technique that is used to acquire lithogeochemical data. To date, however, benchtop scanning electron microscopes, equipped with energy dispersive systems (bSEM-EDS) have received little attention as a possible mineral exploration tool. This study examines the utility of combining pXRF and bSEM-EDS to characterize the igneous stratigraphy and its relationship to Cu-Pd mineralization in a drill hole at the Four Dams occurrence, located within the Eastern Gabbro assemblage of the Coldwell Alkaline Complex, Canada. The first part of this study compares field portable and laboratory techniques. Seventy-two powdered samples analysed by pXRF are compared with traditional major elements analysed by inductively coupled atomic emission spectroscopy (ICP-AES) and trace elements by inductively coupled plasma spectrometry (ICP-MS), and the compositions of 128 olivine, clinopyroxene and plagioclase grains analysed by bSEM-EDS are compared with traditional electron microprobe data. Our results show that each portable technique yields results similar to their lab-based counterparts within the analytical capabilities and precisions of the respective instruments. The second part presents a case study for the application of pXRF and bSEM-EDS to resolve questions related to igneous stratigraphy as an aid to mineral exploration in a complicated geological setting. A major problem for Cu-Pd exploration in the Coldwell Complex of NW Ontario is that the oxide-rich units that host Cu-Pd mineralization in the Marathon Series are petrographically similar to the barren oxide-rich units in the Layered Series. However, the mineralized units are geochemically distinctive. Our results show that the mineralized Marathon Series can be distinguished from the barren Layered Series, including oxide-rich units of both, by combinations of P2O5, Ba, Zr and V/Ti values, determined by pXRF, combined with plagioclase, olivine or clinopyroxene compositions measured by bSEM-EDS. The combination of pXRF and bSEM-EDS thus shows considerable promise as an exploration technique.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?