figshare
Browse
uawm_a_943352_sm5736.pdf (208.82 kB)

Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies

Download (0 kB)
Version 2 2014-12-01, 20:29
Version 1 2014-11-02, 00:00
journal contribution
posted on 2014-12-01, 20:29 authored by Güray Salihoglu

During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations of pastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopolymer matrixes. Sodium silicate–sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

Implications

Despite the wide use of antimony for industrial purposes, disposal options for an antimony waste such as slag from thermal processing of antimony ore were not reported in the existing literature. This study aimed to develop a disposal strategy for the hazardous antimony waste slag. The findings of this study would contribute to understand the immobilization mechanisms of antimony and arsenic and will also be of interest to the owners of the antimony ore processing plants and to researchers investigating the efficiency of stabilization/solidification and geopolymerization technologies.

History